Papers

2024

  • M. Kujawińska, M. Ziemczonok, „Metrology for 3D Quantitative Phase Imaging Instrumentation”, Current Trends in Biomedical Engineering & Biosciences, vol. 22, Art no. 4, 2024, doi: 10.19080/CTBEB.2024.22.556092

2023

  • E. Wdowiak, M. Ziemczonok, J. Martinez-Carranza, and A. Kuś, “Phase-assisted multi-material two-photon polymerization for extended refractive index range,” Additive Manufacturing, vol. 73, pp. 1–9, 2023, doi: 10.1016/j.addma.2023.103666.
  • M. Mazur and W. Krauze, “Volumetric segmentation of biological cells and subcellular structures for optical diffraction tomography images,” Biomedical Optics Express, vol. 14, Art. no. 10, 2023, doi: 10.1364/boe.498275.
  • M. Baczewska et al., “Influence of Yokukansan on the refractive index of neuroblastoma cells,” Biomedical Optics Express, vol. 14, Art. no. 5, 2023, doi: 10.1364/boe.481169.
  • M. Baczewska, M. Mazur, and W. Krauze, “Towards true volumetric refractive index investigation in tomographic phase microscopy at the cellular level,” Optics Continuum, vol. 2, Art. no. 2, 2023, doi: 10.1364/optcon.481162.
  • M. Gontarz, V. Dutta, M. Kujawińska, and W. Krauze, “Phase unwrapping using deep learning in holographic tomography,” Optics Express, vol. 31, Art. no. 12, 2023, doi: 10.1364/oe.486984.
  • M. Baczewska et al., “Quantitative phase imaging supported by Raman micro-spectroscopy for identifying and quantifying changes in myeloid cells treated with proteasome inhibitor,” in Quantitative Phase Imaging IX, 2023, vol. 12389, pp. 1–7. doi: 10.1117/12.2649977.
  • Y. He et al., “Standardizing image assessment in optical diffraction tomography,” Optics Letters, vol. 48, Art. no. 2, 2023, doi: 10.1364/OL.478554.

2022

  • M. Baczewska et al., “Method to analyze effects of low-level laser therapy on biological cells with a digital holographic microscope,” Applied Optics, vol. 61, Art. no. 5, 2022, doi: 10.1364/ao.445337.
  • W. Krauze, A. Kuś, M. Ziemczonok, M. Haimowitz, S. Chowdhury, and M. Kujawińska, “3D scattering microphantom sample to assess quantitative accuracy in tomographic phase microscopy techniques,” Scientific Reports, vol. 12, Art. no. 1, 2022, doi: 10.1038/s41598-022-24193-7.
  • A. Kuś, “Real-time, multiplexed holographic tomography,” Optics and Lasers in Engineering, vol. 149, pp. 1–8, 2022, doi: 10.1016/j.optlaseng.2021.106783.
  • R. K. Muhamad, P. Stępień, M. Kujawińska, and P. Schelkens, “Off-axis image plane hologram compression in holographic tomography – metrological assessment,” Optics Express, vol. 30, Art. no. 3, 2022, doi: 10.1364/OE.449932.
  • P. Ossowski et al., “Near-infrared, wavelength, and illumination scanning holographic tomography,” Biomedical Optics Express, vol. 13, Art. no. 11, 2022, doi: 10.1364/boe.468046.
  • P. Schelkens et al., “Compression strategies for digital holograms in biomedical and multimedia applications,” Light : advanced manufacturing, vol. 3, Art. no. 34, 2022, doi: 10.37188/lam.2022.040.
  • I. Shevkunov, M. Ziemczonok, M. Kujawińska, and K. Egiazarian, “Complex-domain SVD- and sparsity-based denoising for optical diffraction tomography,” Optics and Lasers in Engineering, vol. 159, pp. 1–9, 2022, doi: 10.1016/j.optlaseng.2022.107228.
  • P. Stępień et al., “Numerical refractive index correction for the stitching procedure in tomographic quantitative phase imaging,” Biomedical Optics Express, vol. 13, Art. no. 11, 2022, doi: 10.1364/boe.466403.
  • P. Stępień, W. Krauze, and M. Kujawińska, “Preprocessing methods for quantitative phase image stitching,” Biomedical Optics Express, vol. 13, Art. no. 1, 2022, doi: 10.1364/boe.439045.
  • M. Ziemczonok, A. Kuś, and M. Kujawińska, “Optical diffraction tomography meets metrology — Measurement accuracy on cellular and subcellular level,” Measurement, vol. 195, pp. 1–9, 2022, doi: 10.1016/j.measurement.2022.111106.
  • M. Baczewska et al., “On-chip holographic tomography for quantifying refractive index changes of cells’ dynamics,” in Quantitative Phase Imaging VIII : 22-27 January 2022, San Francisco, California, United States : 20-24 February 2022, online, 2022, vol. 11970, pp. 1–6. doi: 10.1117/12.2608641.

2021

  • V. Balasubramani et al., “Holographic tomography: techniques and biomedical applications [Invited],” Applied Optics, vol. 60, Art. no. 10, 2021, doi: 10.1364/AO.416902.
  • V. Balasubramani et al., “Roadmap on Digital Holography-Based Quantitative Phase Imaging,” Journal of Imaging, vol. 7, Art. no. 12, 2021, doi: 10.3390/jimaging7120252.
  • B. Javidi et al., “Roadmap on digital holography [Invited],” Optics Express, vol. 29, Art. no. 22, 2021, doi: 10.1364/OE.435915.
  • A. Kuś, W. Krauze, and M. Kujawińska, “From digital holographic microscopy to optical coherence tomography – separate past and a common goal,” Photonics Letters of Poland, vol. 13, Art. no. 4, 2021, doi: 10.4302/plp.v13i4.1130.
  • P. Machnio, M. Ziemczonok, and M. Kujawińska, “Reconstruction enhancement via projection screening in holographic tomography,” Photonics Letters of Poland, vol. 13, Art. no. 2, 2021, doi: 10.4302/plp.v13i2.1104.
  • W. Krauze, P. Ossowski, M. Nowakowski, M. Szkulmowski, and M. Kujawińska, “Enhanced QPI functionality by combining OCT and ODT methods,” in Quantitative Phase Imaging VII, 2021, vol. 11653, pp. 1–6. doi: 10.1117/12.2582085.

2020

  • M. Baczewska, K. Eder, S. Ketelhut, B. Kemper, and M. Kujawińska, “Refractive Index Changes of Cells and Cellular Compartments Upon Paraformaldehyde Fixation Acquired by Tomographic Phase Microscopy,” Cytometry Part A, vol. 97, Art. no. 9, 2020, doi: 10.1002/cyto.a.24229.
  • W. Krauze, “Optical diffraction tomography with finite object support for the minimization of missing cone artifacts,” Biomedical Optics Express, vol. 11, Art. no. 4, 2020, doi: 10.1364/BOE.386507.
  • J. Martinez-Carranza, M. Mikuła-Zdańkowska, M. Ziemczonok, and T. Kozacki, “Multi-incidence digital holographic microscopy with high axial resolution and enlarge measurement range,” Optics Express, vol. 28, Art. no. 6, 2020, doi: 10.1364/OE.385743.
  • P. K. Nienałtowski, M. Baczewska, and M. Kujawińska, “Comparison of fixed and living biological cells parameters investigated with digital holographic microscope,” Photonics Letters of Poland, vol. 12, Art. no. 1, 2020, doi: 10.4302/plp.v12i1.971.
  • N. T. Shaked, M. Vicente, M. Trusiak, A. Kuś, and S. K. Mirsky, “Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing,” Advances in Optics and Photonics, vol. 12, Art. no. 3, 2020, doi: 10.1364/AOP.384612.
  • P. Stępień, R. K. Muhamad, D. Blinder, P. Schelkens, and M. Kujawińska, “Spatial bandwidth-optimized compression of image plane off-axis holograms with image and video codecs,” Optics Express, vol. 28, Art. no. 19, 2020, doi: 10.1364/OE.398598.
  • M. Baczewska, K. Eder, S. Ketelhut, B. Kemper, and M. Kujawińska, “Holotomographic investigation of an influence of PFA cell fixation process on refractive index of cellular organelles in epithelial cells,” in Quantitative Phase Imaging VI, 2020, vol. 11249, pp. 1–7. doi: 10.1117/12.2544660.
  • M. Kujawińska and W. Krauze, “True Volumetric Measurements of Cells and Tissues by Limited Angle Holographic Tomography,” in Computational Optical Sensing and Imaging. Conference Proceedings 2020, 2020.
  • A. Kuś, “Limited-angle holographic tomography for flow cytometry,” in Digital Holography and Three-Dimensional Imaging 2020. Proceedings, 2020. doi: 10.1364/dh.2020.hf1g.5.
  • R. K. Muhamad, P. Stępień, D. Blinder, P. Schelkens, and M. Kujawińska, “Holographic data compression for holographic microscopy and tomography in biomedical applications,” in Digital Holography and Three-Dimensional Imaging 2020. Proceedings, 2020, pp. 1–2.
  • P. Stępień, R. K. Muhamad, M. Kujawińska, and P. Schelkens, “Hologram compression in quantitative phase imaging,” in Quantitative Phase Imaging VI, 2020, vol. 11249, pp. 1–12. doi: 10.1117/12.2546092.
  • M. Ziemczonok, A. Kuś, and M. Kujawińska, “Quantifying the performance of holographic tomography systems using the 3D-printed biological cell phantom,” in Quantitative Phase Imaging VI, 2020, vol. 11249, pp. 1–7. doi: 10.1117/12.2545815.

2019

  • M. Dudek and M. Kujawińska, “Polymer optical bridges for efficient splicing of optical fibers,” Optical Engineering, vol. 58, Art. no. 2, 2019, doi: 10.1117/1.OE.58.2.026111.
  • M. Kujawińska, B. Lee, J. Kim, and T. Kim, “Special Issue on Digital Holographic 3D Imaging: Capture, Display, and Evaluation,” ETRI Journal, vol. 41, Art. no. 1, 2019, doi: 10.4218/etr2.12168.
  • A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI Journal, vol. 41, Art. no. 1, 2019, doi: 10.4218/etrij.2018-0505.
  • P. L. Makowski and M. Ziemczonok, “Projection extrapolation routine for tight-frame limited-angle optical diffraction tomography,” Optics Letters, vol. 44, Art. no. 14, 2019, doi: 10.1364/OL.44.003442.
  • P. Stępień, D. Korbuszewski, and M. Kujawińska, “Digital Holographic Microscopy with extended field of view using tool for generic image stitching,” ETRI Journal, vol. 41, Art. no. 1, 2019, doi: 10.4218/etrij.2018-0499.
  • P. W. Wachulak et al., “A “water window” tomography based on a laser-plasma double-stream gas-puff target soft X-ray source,” Applied Physics B- Lasers and Optics, vol. 125, Art. no. 70, 2019, doi: 10.1007/s00340-019-7183-2.
  • M. Ziemczonok, A. Kuś, P. Wasylczyk, and M. Kujawińska, “3D-printed biological cell phantom for testing 3D quantitative phase imaging systems,” Scientific Reports, vol. 9, pp. 1–9, 2019, doi: 10.1038/s41598-019-55330-4.
  • M. Kujawińska, W. Krauze, M. Baczewska, A. Kuś, and M. Ziemczonok, “Comparative study of laboratory and commercial limited-angle holographic tomography setups,” in Proceedings of SPIE: Quantitative Phase Imaging V, 2019, vol. 10887, pp. 1–7. doi: 10.1117/12.2511641.
  • M. Kujawińska, M. Ziemczonok, A. Kuś, and W. Krauze, “Metrological studies of limited angle holographic tomography systems based on a phase phantom mimicking biological cell,” in Digital Holography and Three-Dimensional Imaging 2019. Proceedings, 2019, pp. 1–2. doi: 10.1364/DH.2019.Th2B.2.
  • A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXVI, Proceedings of SPIE, 2019, vol. 10883, pp. 1–6. doi: 10.1117/12.2510628.
  • P. Stępień and M. Kujawińska, “Block-matching-based filtration in holographic tomography reconstruction,” in Proceedings of SPIE: Optical Methods for Inspection, Characterization, and Imaging of Biomaterials IV, 2019, vol. 11060, pp. 1–8. doi: 10.1117/12.2526003.
  • P. Wachulak et al., “Tomographic imaging with the use of a compact soft X-ray microscope based on a laser plasma light source,” in EUV and X-ray Optics: Synergy between Laboratory and Space VI, 2019, vol. 11032, pp. 1–7. doi: 10.1117/12.2527310.

2018

  • M. Dudek and M. Kujawińska, “Optonumerical method for improving functional parameters of polymer microtips,” Optical Engineering, vol. 57, Art. no. 1, 2018, doi: 10.1117/1.OE.57.1.014101.
  • W. Krauze, A. Kuś, D. Śladowski, E. Skrzypek, and M. Kujawińska, “Reconstruction method for extended depth-of-field optical diffraction tomography,” Methods, vol. 136, pp. 40–49, 2018, doi: 10.1016/j.ymeth.2017.10.005.
  • M. Baczewska, M. Kujawińska, E. Skrzypek, and D. Śladowski, “Feasibility study of investigation of skin at cellular level by digital holographic microscopy,” in Speckle 2018: VII International Conference on Speckle Metrology, 2018, vol. 10834, pp. 1–7. doi: 10.1117/12.2319578.
  • M. Dudek and M. Kujawińska, “Polymer optical bridges for efficient splicing of optical fibers,” in Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XII, 2018, vol. 10755, pp. 1–13. doi: 10.1117/12.2319942.
  • W. Krauze and M. Kujawińska, “Sinogram cleaning procedure for optical diffraction tomography,” in Speckle 2018: VII International Conference on Speckle Metrology, 2018, vol. 10834, pp. 1–5. doi: 10.1117/12.2319580.
  • M. Kujawińska and L. R. Jaroszewicz, “Introduction,” in Speckle 2018: VII International Conference on Speckle Metrology, 2018, vol. 10834, p. 1–1 (xv–xv). doi: 10.1117/12.2514875.
  • A. Kuś, S. Mues, and B. Kemper, “Scanning errors in holographic tomography,” in Speckle 2018: VII International Conference on Speckle Metrology, 2018, vol. 10834, pp. 1–6. doi: 10.1117/12.2319628.
  • P. L. Makowski, “Redundant Haar wavelet regularization in sparse-view optical diffraction tomography of microbiological structures,” in Speckle 2018: VII International Conference on Speckle Metrology, 2018, vol. 10834, pp. 1–15. doi: 10.1117/12.2319587.
  • K. Siedlecki, M. Kujawińska, and P. K. Nienałtowski, “Multimodalne badania CKO-IR strukturalnych kompozytów polimerowych o strukturze kanapkowej poddanych działaniu wysokoenergetycznej wiązki laserowej,” in Speckle 2018: VII International Conference on Speckle Metrology, 2018, vol. 10834, pp. 1–8. doi: 10.1117/12.2319599.
  • P. Stępień, T. Bernaś, W. Krauze, H. Sas-Nowosielska, and M. Kujawińska, “Multi-modal quantitative analysis of HeLa cells using digital holographic microscopy and confocal laser scanning microscopy,” in Speckle 2018: VII International Conference on Speckle Metrology, 2018, vol. 10834, pp. 1–7. doi: 10.1117/12.2319588.
  • M. Ziemczonok, A. Kuś, M. Nawrot, and M. Kujawińska, “Characterization of 3D phantom for holographic tomography produced by two-photon polymerization,” in Speckle 2018: VII International Conference on Speckle Metrology, 2018, vol. 10834, pp. 1–7. doi: 10.1117/12.2319581.

2017

  • A. Kuś, “Illumination-related errors in limited-angle optical diffraction tomography,” Applied Optics, vol. 56, Art. no. 33, 2017, doi: 10.1364/AO.56.009247.
  • J. Martinez-Carranza, P. Stępień, and T. Kozacki, “Phase retrieval with tunable phase transfer function based on the transport of intensity equation,” in Modeling Aspects in Optical Metrology VI. Proceedings Volume 10330, B. Bodermann and K. Frenner, Eds. 2017, pp. 1–10. doi: 10.1117/12.2269593.
  • W. Krauze, A. Kuś, E. Skrzypek, and M. Kujawińska, “Reconstruction method for extended depth-of-field limited-angle tomography,” in Quantitative Phase Imaging III, 2017, vol. 10074, pp. 1–5. doi: 10.1117/12.2251842.
  • A. Kuś, W. Krauze, and M. Kujawińska, “Focus-tunable lens in limited-angle holographic tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXIV, Proceedings of SPIE, 2017, vol. 10070, pp. 1–9. doi: 10.1117/12.2251462.